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ABSTRACT

This study presents a systematic analysis for identifying and attributing trends in the annual frequency of

extreme rainfall events across the contiguous United States to climate change and climate variability modes.

A Bayesian multilevel model is developed for 1244 rainfall stations simultaneously to test the null hypothesis

of no trend and verify two alternate hypotheses: trend can be attributed to changes in global surface tem-

perature anomalies or to a combination of well-known cyclical climate modes with varying quasiperiodicities

and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool

information across stations and reduce the parameter estimation uncertainty, hence identifying the trends

better. The choice of the best alternate hypothesis is made based on the Watanabe–Akaike information

criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed

in 742 of the 1244 stations. Trends in 409 of these stations can be attributed to changes in global surface

temperature anomalies. These stations are predominantly found in the U.S. Southeast and Northeast climate

regions. The trends in 274 of these stations can be attributed to El Niño–Southern Oscillation, the North

Atlantic Oscillation, the Pacific decadal oscillation, and the Atlantic multidecadal oscillation along with

changes in global surface temperature anomalies. These stations are mainly found in the U.S. Northwest,

West, and Southwest climate regions.

1. Introduction

There is a large body of literature that supports the

contribution of humans to global warming (e.g., Ring

et al. 2012; IPCC 2013). The rise of temperature and the

resulting increase in the atmosphere’s water-holding

capacity intensify the global water cycle (Huntington

2006; Trenberth 2011) and lead to more severe and

frequent precipitation events (Alfieri et al. 2015; Min

et al. 2011). This is particularly felt in the high latitudes

and tropical regions, and during the winter seasons of

the northern midlatitudes (Seneviratne et al. 2012).

During the recent years, efforts have been made to in-

vestigate the trends in extreme precipitation and their

association with climate change at the global (e.g.,

Westra et al. 2013; Alexander et al. 2006; Asadieh and

Krakauer 2015; Fischer and Knutti 2014), national

(Balling and Goodrich 2011; Karl and Knight 1998;

Groisman et al. 2004; Sun and Lall 2015; Zhu 2013), and

regional scales (Villarini et al. 2011; Parr et al. 2015).

However, anthropogenic forcing cannot solely explain

the trend in climate observations, and the actual trajectory

is highly dependent on internal variability of the natural

climate (Seneviratne et al. 2012). Since climate has a cy-

clical nature, in a particular region, its manifestation can

be entirely different for a given decade or century. Many

studies have documented the effect of natural climate

variability on rainfall patterns including the impact of El

Niño–Southern Oscillation (ENSO), the interdecadal

Pacific oscillation (IPO), the Pacific decadal oscillation

(PDO), the North Atlantic Oscillation (NAO), and the

Atlantic multidecadal oscillation (AMO) on precipitation

extremes and rainfall regime in the United States

(Gershunov and Cayan 2003), South America (Haylock

et al. 2006), eastern Africa (Schreck and Semazzi 2004),

India (Zhang and Delworth 2006), Australia (Verdon

et al. 2004; Samuel and Sivapalan 2008; Kamruzzaman

et al. 2013; Cai and Van Rensch 2012; Sun et al. 2014;

Westra et al. 2015), Europe (Willems 2013; Cioffi et al.
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2015), and the Southern Hemisphere (Gergis and Henley

2017). Hence, it is important to tease out the influence of

anthropogenic forcing and natural climate variability on

the occurrence of extreme events in an integrated

framework, an objective that has motivated this study.

This paper provides a hypothesis-driven methodology to

understand the association of trends in extreme rainfall

event frequency to anthropogenic forcing and natural

climate variability over the contiguous United States.

A standard method that has been adopted in the past

is to perform a parametric/nonparametric trend analysis,

or to fit a distribution based on well-known probability

models on a limited time series data of block maxima or

peaks over a threshold. For instance, Asadieh and

Krakauer (2015) have used linear regression andMann–

Kendall trend tests on annual maximum daily rainfall to

quantify the global trends in the last century. Westra

et al. (2013) have used a nonstationary generalized ex-

treme value distribution (GEV) for annual maximum

rainfall data where the location parameter is informed

by global near-surface temperature to quantify the

association between the precipitation extremes and

changing temperatures. Similarly, Sun and Lall (2015)

have used a nonstationary hierarchical Bayesian GEV

cluster model on annual maximum rainfall data over the

United States and quantified spatially coherent time

trends. Scian and Pierini (2013) have adopted a gamma

distribution model to identify the seasonal trends in the

wet and dry extremes. Villarini et al. (2011) have used

various extreme value distribution models, changepoint

analysis and Mann–Kendall trend tests to quantify

changes in extreme rainfall in the U.S. Midwest.

The methods described above typically restrict the ob-

jective to examining whether there is a positive or nega-

tive trend in the extreme events, or whether there are

changes in the parameters before and after a certain time

(e.g., pre-1960 vs post-1960). However, as mentioned

above, the quasiperiodic nature of climate leads to peri-

odic runs of wet or dry years regionally. These cyclical

variabilities often translate into periods of increasing or

decreasing extreme events depending on the phase of the

climate. Hence, based on the length of the records avail-

able at a particular station, the trend can be overestimated

or can lead to a false signal if one does not account for the

full climate information. This investigation follows a sys-

tematic hypothesis-based learning approach that attri-

butes the time trends in extreme events to anthropogenic

forcings (using global near-surface temperature as a

proxy) and well-known natural processes such as the in-

terannual (using ENSO index as a proxy) to decadal

(using the NAO and PDO indices as proxies) to multi-

decadal (using the AMO index as a proxy) oscillations

driven by ocean–atmosphere interactions.

Given that there are a large number of rainfall stations

across the contiguous United States that may exhibit

similar behavior regionally, we employed a Bayesian

multilevel modeling approach to group information and

to reduce parameter estimation uncertainty.A systematic

learning structure shapes the study to identify the spatial

controls of anthropogenic forcing and various modes of

natural variability, through the inclusion of global near-

surface temperature and climate variables into the in-

ference of the Bayesian model. We assume a Poisson

processmodel for the number of dayswith rainfall greater

than a threshold (95th percentile of the rainfall data for

the whole period of record). This assumption is tested

using a Kolmogorov–Smirnov (KS) test. In our analysis

we consider two hypotheses: 1) the monotonic trend in

the annual frequency of extreme rainfall events is solely

attributed to anthropogenic forcing, and 2) the mono-

tonic trend in the annual frequency of extreme rainfall

events is attributed to anthropogenic forcing and cyclical

climate variability. The models get information from

global near-surface temperature and climate indices, and

the residual trends for each hypothesis are examined.

As a motivation for our study, in the next section, a

simple simulation experiment is presented to explicate

the role of climate and the length of the available time

series in detecting the trends. Section 3 presents the

rainfall station data for the contiguous United States, its

filtering procedure, the data used for global near-surface

temperature, and the climate indices. In section 4, we

introduce the Bayesian multilevel models for trend

identification in a systematic hypothesis framework. In

section 5, we present the trend results and their regional

variability under each hypothesis. Finally, in section 6,

we present a discussion and summary of the study.

2. The role of climate in detecting trends: A
simulation experiment

A simulation-based experiment is designed to illustrate

the importance of accounting for periodic climate oscil-

lations in trend analysis of hydroclimatic variables. We

argue that a simple time trend analysis conducted to

capture increases or decreases in hydroclimatic variables

can often show false positives depending on the length of

the record (time series) used and/or depending on the

phase of the climate signal. For example, let us suppose

that rainfall in a given region is influenced by interannual

(e.g., ENSO), decadal (e.g., PDO), and multidecadal

(e.g., AMO) climate oscillations. Under this premise, any

given decade or a block of time can manifest as runs of

wet or dry years. If the region has observed records long

enough to capture these cyclicities, periods of wet years

will be transposed by periods of dry years and the
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resulting long-term time trend in rainfall will be non-

existent. On the contrary, if the region has limited ob-

served records, one can detect a long-term increasing or

decreasing trend in the data depending on whether the

climate is manifested as wet or dry years. To demonstrate

this further, we create the following experimental setup.

Consider that the annual frequency of extreme rainfall

events (i.e., the number of rainfall events exceeding a

threshold per year) follows a Poisson process with a rate

parameter that depends on several periodic modes (cy-

clical trends):

Y
t
;Poisson(l

t
) and (1)

l
t
5a1b

1
sin(v

1
t)1b

2
sin(v

2
t)

1b
3
sin(v

3
t)1b

4
sin(v

4
t) . (2)

Note that this is a stationary process (i.e., there is no

long-term time trend in the model).

The following parameter values are assumed: an av-

erage of 10 events per year (i.e., a 5 10), a unit ampli-

tude for all the periodic waves (i.e., b1, b2, b3, and b4 5
1), and four distinct frequencies (v1, v2, v3, and v4) that

replicate interannual (periodicity of 5 yr), decadal (pe-

riodicity of 10 yr), bidecadal (periodicity of 20 yr), and

century (periodicity of 100 yr) scales of climate vari-

ability. Next, we perform the following steps:

1) The Poisson process model is used to generate 10 000

years as the population.

2) A contiguous block of m years (m varies from 10 to

1000 yr) from the rainfall extremes data Y and the

predictor data (four periodic cycles) are considered

as a sample from the population.

3) For eachm, 1000 random blocks ofm years are drawn

from the 10000-yr population data, a generalized linear

time trend model M1 is fit to each random block, and

the trend coefficient is verified for statistical sig-

nificance at the 1% significance level. Notice that M1

does not use the periodic cycles as predictors; hence, for

any random block of m years, there is a chance of

observing a monotonic time trend. We record these as

false positives (since the population data arise from a

stationary process) and compute the overall percentage

false positives out of the 1000 random blocks.

4) For the same m-yr random block of data, the

generalized linear model M2 is now fit to the rainfall

extremes data and the time block and the periodic

cycles. We record the false positives after accounting

for the full cyclical trends. Based on our hypothesis,

the random blocks that exhibited statistically signif-

icant monotonic time trends before accounting for

the cyclical patterns should now not show this trend

once the predictors are included.

Figure 1 presents the results of this experiment. The

population data (i.e., the 10000 years of rainfall extremes

annual frequency data generated from the Poisson pro-

cess model) are shown in Fig. 1a. A randomly selected

segment of 80yr is shown in Fig. 1b. Notice that this

sample shows an apparent monotonic increasing time

trend. This is referred to as a false positive. A generalized

linear model fit to the sample data against time (yt5 a01
b0T1 «t) shows that the slope is positive with a p value of

0.00195 (a statistical significance beyond the 99% confi-

dence level). As an alternative, we fit another generalized

linear model to the same sample data, but with time, and

the four cyclical predictors [sin(v1t), sin(v2t), sin(v3t), and

sin(v4t)] coming from the same segment [yt5 a01 b0T1
b1 sin(v1t) 1 b2 sin(v2t) 1 b3 sin(v3t) 1 b4 sin(v4t) 1 «t].

All the coefficients are positive with respective p values of

0.1526, 0.0740, 0.0544, 0.0417, and 0.5780. It is observed

that the significance of the time trend coefficient is nulli-

fied with the inclusion of the cyclical predictors. In this

segment of the data, the monotonic increase in rainfall

extremes can be explained by a combination of 10- and

20-yr periodic cycles.

Figure 1c presents the comparison of percentage false

positives from M1 (only time as the predictor) and M2

(time and climate signals as predictors) for various sizes of

the random segments. We vary the segment size from 10

to 1000 at increments of 10, for a total of 100 segments. In

Fig. 1c, the color of the dot indicates the size of the seg-

ment. It ranges from dark blue for very small segment

sizes to dark red for very large segment sizes. One can

analogously compare this to having stations with very

small sample sizes to stations with very large sample sizes.

We estimate the false positives as the number of random

models out of 1000 that show a time trend coefficient that

is significant at the 1% confidence level. From Fig. 1, we

observe that the percentage of false positives forM1 range

from0 for large sample sizes to around 15 for small sample

sizes. However, the percentage of false positives forM2

only range from 0 (large sample sizes) to 1 (small

sample sizes), which is expected under random chance

at a 1% significance level. In Fig. 1, two important

observations can be made: 1) a large sample size is

needed to identify the monotonic time trends robustly,

and 2) accounting for the cyclical patterns (climate

signals) will help reduce the false positives regardless

of the sample size. While long records of hydroclimatic

variables will help better estimate the parameter un-

certainty, we propose a climate-informed trend analy-

sis model that can decompose the underlying climate

signals while attributing the trends in the residual noise

to factors outside the internal variability.

With this synthetic experiment as motivation, we

proceed with the systematic hypothesis-driven approach
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for trend identification in rainfall extreme frequency

across the contiguous United States. Unlike the exper-

imental setup presented in this section, we make no as-

sumptions as to the stationarity of the process, and try to

learn it in a systematic way by first attributingmonotonic

time trend to only anthropogenic influences (global

near-surface temperature) and then examining for well-

known large-scale climate indicators.

3. Data and processing

a. Rainfall data

Using data from the Global Historical Climatology

Network (GHCN; https://www.ncdc.noaa.gov/data-access/

land-based-station-data/land-based-datasets/global-historical-

climatology-network-ghcn), we collected 12 244 sta-

tions across the United States and extracted the total

daily precipitation from those that have data from 1900 to

2014 (115 years). From these data, we selected high-

quality stations using the following procedure for each

station: First, any year with more than 72 days (20%) of

missing data are flagged as a missing year. Next, only

stations that have at least 92 years of complete data (i.e.,

less than 20% missing) are selected. This process yield-

ed 1244 stations across the contiguous United States.

Figure 2a shows the spatial distribution of these stations

along with the number of years of available data for each

station. Figure 2b shows the boundaries of the nine cli-

mate regions (Karl and Koss 1984).

b. Global near-surface temperature

Globally averaged near-surface temperature serves as

a proxy for anthropogenic forcing that can increase the

rainfall extremes. For this study, we used the annual

FIG. 1. (a) The population data generated from the Poisson process model. (b) A randomly selected segment of

80 yr. This sample shows an apparent monotonic increasing time trend. (c) The comparison of percentage false

positives betweenM1 andM2 for various sizes of the random segments.We vary the segment size from 10 to 1000 at

increments of 10, for a total of 100 segments. The color of the dot indicates the size of the segment. It ranges from

dark blue for very small segment sizes to dark red for very large segment sizes.We estimate the false positives as the

number of random models out of 1000 that show a time trend coefficient that is significant at the 1% confidence

level. It is observed that the percentage false positives for M1 range from 0 for large sample sizes to around 15 for

small sample sizes. However, the percentage false positives forM2 only range from 0 (large sample sizes) to 1 (small

sample sizes), which is expected under random chance at a 1% significance level.
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near-surface global temperature anomalies (with respect

to 1951–80) available from the National Aeronautics and

Space Administration (NASA) Goddard Institute for

Space Studies (GISS) (Hansen et al. 2010). Westra et al.

(2013) have used this data as the covariate in their non-

stationary trend model for annual maximum pre-

cipitation globally. Recently, Sutton et al. (2015) have

shown that globally averaged near-surface temperature

FIG. 2. (a) The location of selected stations used in the model. (b) The nine climate regions

over the contiguous United States (adapted from https://www.ncdc.noaa.gov/monitoring-

references/maps/us-climate-regions.php).
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(GST) can be related to local climate and can provide a

means to guide climate change attribution studies.

c. ENSO

Several studies (e.g., Gershunov and Cayan 2003;

Cayan et al. 1999) have confirmed the noticeable impact

of ENSO on extreme precipitation patterns in the

United States. The El Niño warm phase is associated

with intense precipitation in the U.S. Southeast (Eichler

and Higgins 2006) and shift of anomalously intense

precipitation from the U.S. Southwest toward the U.S

North region (Meehl et al. 2007). Similarly, the La Niña
cold phase is found to yield a positive anomaly in the

Southwest (Gershunov and Cayan 2003; Castello and

Shelton 2004). The Niño-3.4 index was obtained from

theRoyalNetherlandsMeteorological Institute’s (KNMI)

Climate Explorer (http://climexp.knmi.nl) and aggregated

from monthly to the average yearly data.

d. AMO

The findings of Enfield et al. (2001) explain that the

warming phase of the AMO is likely to be associated

with a decrease in annual rainfall totals over the United

States. Other studies suggested that the warm phase of

the AMO is one driving factor in the increase of rainfall

intensity (Curtis 2008) and duration (Teegavarapu et al.

2013) in central and southern Florida. The AMO index

used in the model has been calculated as the average of

the monthly Hadley Centre Sea Ice and Sea Surface

Temperature dataset (HadISST) of sea surface tem-

perature anomalies (van Oldenborgh et al. 2009).

e. NAO

The NAO is associated with increases in precipitation

frequency and positive daily rainfall anomalies in the

northern United States and decreases in the southern

United States (Durkee et al. 2008). Archambault et al.

(2008) have also reported that during the active phase, the

NAO favors the moisture transport and relatively wet

conditions near the eastern coast of the United States.

f. PDO

The PDO in the warm phase can amplify the modu-

lating effect of El Niño, and alternate with the La Niña
teleconnection with regard to winter precipitation in the

western United States (Gershunov 1998; McCabe and

Dettinger 1999). Additionally, in the years of neutral

ENSO and cold PDO, more than 80% of western U.S.

climate divisions are drier than that of any other ENSO

and PDO combination (Goodrich 2007). The fact that

the long-term effect of PDO can extend up to three

decades (Mantua and Hare 2002) emphasizes its

importance.

The PDO (https://www.ncdc.noaa.gov/teleconnections/

pdo/) and NAO (https://climatedataguide.ucar.edu/

climate-data/hurrell-north-atlantic-oscillation-nao-index-

station-based) indices are obtained from NOAA’s Ex-

tended Reconstructed Sea Surface Temperature and the

station-based difference of normalized sea level pressure,

respectively.

4. Methodology

Unlike several prior investigations of trends in

hydroclimatic variables that verify the hypothesis of no

trend using standard parametric or nonparametric tests,

here we introduce a framework where systematic hy-

potheses are tested and compared using a set of models.

The hypotheses are postulated to attribute the trends (if

identified) to appropriate natural or anthropogenic

forcings. We start with testing the null hypothesis that

there is no trend, and the time series is a random draw

from a probability distribution with parameters in-

variant to time. If the null hypothesis of no trend is

rejected, we explore two alternate hypotheses to explain

the trends. In the first alternate hypothesis, our propo-

sition is that the detected time trend is solely due to

anthropogenic forcings. In our case, we assumeGST as a

proxy for anthropogenic forcings. In the second alter-

nate hypothesis, we postulate that the detected time

trend is due to anthropogenic forcings or due to cyclical

climate influences, or some combination thereof. The

corresponding residual time-trend analysis for the two

hypotheses explains whether the long-term natural

variability or changing climate dominates the frequency

of extreme rainfall events.

a. Choice of rainfall extremes and modeling
framework

We consider the total number of days each year with

rainfall events exceeding a threshold P* as the measure

of extremes. The 95th percentile of the daily nonzero

rainfall series is considered as the threshold P* for each

station. The time series of the frequency of extreme

rainfall at each station is thus given as

Y
it
5 �

Nd

j51

d
j
it and (3)

d
j
it 5

(
1, if Pj

it $P
i
*

0, if P
j
it ,P

i
*
, (4)

where t is the year (1900–2014), i is the station index, Pj
it

is the daily rainfall for the jth day for year t at station i,

and Pi* is the rainfall exceedance threshold for station

i. Also, Nd is the number of days in the year (365 or 366
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for leap years), and d is the binary indicator function.

A series of Bayesian multilevel generalized linear

models (Gelman et al. 2003; Gelman and Hill 2006)

with different possible explanations of the underlying

trends in Yit are presented next. A key aspect of the

multilevel–hierarchical models is that the observed

data Yit can be modeled conditionally on certain pa-

rameters linked to time-varying exogenous variables,

while the parameters themselves can be modeled con-

ditionally on certain hyperparameters linked to re-

gionally varying predictors to capture at-station and

across-station variability simultaneously. Multilevel

models also facilitate the pooling of information from

multiple similarly behaving stations, thereby reducing

the uncertainty in estimating the coefficients and im-

proving the model reliability. They also allow us to

study the relationships of the parameters to station

level predictors.

Our goal is to estimate the trend in the frequency of

rainfall extremes for each of the 1244 identified stations

in the contiguous United States. The time series (1900–

2014) of the rainfall extreme event frequency in each

station is informed by time, anthropogenic, and climate

covariates (depending on the particular hypothesis).

Besides, we have climatological attributes (measure of

average climatic conditions and elevation) as station

level predictors. The basic idea is that a particular co-

variate may inform the time series at each of the sta-

tions. If the influences were the same, pooling all the

data into the same regression would be effective since

that would reduce the uncertainty associated with pa-

rameter estimation. However, the influence of the co-

variates across the stations may vary systematically due

to local conditions. The multilevel model can be used

for structuring this information (within and across

stations) by considering multiple levels of modeling.

The individual trend coefficients for each station on

each covariate are estimated at the first level. The er-

rors at the first level represent the within station vari-

ations that can be attributed to reporting errors and

residual variability beyond what is explained by the

covariates. The second level informs these trend

coefficients across stations using local climatological

features such as elevation and mean annual precipita-

tion and its variability. The errors at the second level

represent variations in the trends between the stations

that cannot be explained by station level climatological

predictors.

Bayesian multilevel–hierarchical models that com-

bine data sources or model extreme events vary widely

in approach. Cooley et al. (2007) estimated the magni-

tude and return frequency of extreme daily rainfall by

fitting Bayesian hierarchical models to Colorado gauge

measurements assuming a generalized Pareto distribu-

tion. Coles and Tawn (1996) developed Bayesian tech-

niques to analyze daily rainfall series. Sang and Gelfand

(2010) proposed a hierarchical Bayesian modeling ap-

proach for spatial rainfall extremes. Schliep et al. (2010)

developed hierarchical spatial models for analyzing

rainfall extremes from various regional climate models.

Readers are referred to Renard et al. (2013) for a de-

tailed review of Bayesian methods for nonstationary

extreme value analysis.

b. Null hypothesis H0: There is no monotonic trend in
the annual frequency of extreme rainfall events

We begin our investigation with the null hypothesis

that there is nomonotonic trend in the annual frequency

of extreme rainfall events. We test this hypothesis

using a Bayesian multilevel generalized linear model.

The frequency of rainfall extremesY is assumed to come

from a distribution (process model) with a probability

density function f(Y ju), where u is the parameter vector.

In the current application, since we are estimating the

number of days (counts) in an interval, we consider that

Y follows a Poisson distribution. The first level of the

model considers that in each station i, Yit is described

by a Poisson distribution with time-varying rate pa-

rameter lit that is informed by a regression on time twith

intercepts ai
0 and a 1 3 1244 regression coefficient ma-

trix b0. The second level of the model considers that the

intercepts a0 and the regression coefficient matrix

b0 can be estimated using the station level location and

climatological predictors. The multilevel structure al-

lows parameterizing the time trend across stations that

may have a disparate range or scale of values:

Y
it
;Poisson(l

it
) , (5)

ln(l
it
)5ai

0 1bi
0t , (6)

ai
0 ;N(a

00
1 a

01
P
i
1 a

02
CV

i
1 a

03
E

i
,s2

a0
), and (7)

bi
0 ;N(b

00
1b

01
P
i
1 b

02
CV

i
1 b

03
E

i
,s2

b0
), (8)

whereYit is the number of extreme rainfall days in year t at

station i, t is the indicator of time (1900–2014), andPi, CVi,

and Ei are the average annual rainfall, coefficient of vari-

ation of annual rainfall, and elevation of station i. Since the

effect of the trend (response) parameters depends on the

region, the second level helps retain the regional charac-

teristics and convey the variation into the posterior simu-

lation. Renard (2011) also proposed the station-specific

covariates in the second level as a means to retain the

spatial dependency in the model. The errors with variance

s2
a0

and s2
b0

represent variation in the intercept and trend

between stations beyond what is explained by the station

1 JANUARY 2018 ARMAL ET AL . 375

Unauthenticated | Downloaded 01/17/23 09:17 PM UTC



level elevation and climatological predictors. For each

station i, we investigatewhether the trend coefficientbi
0 is

significantly different from zero or not. We compute the

probability that the posterior distribution of bi
0 is greater

than zero (p value) and evaluate its statistical significance

at 1% level of significance (i.e., the probability of in-

correctly rejecting the null hypothesis). If the null hy-

pothesis that there is no monotonic time trend in the

annual frequency of rainfall extremes is rejected, we

postulate the following alternate hypotheses to explain

the monotonic time trend.

c. Alternate hypothesis H1: The monotonic trend in
the annual frequency of extreme rainfall events is
solely attributed to anthropogenic forcing

An increasing atmospheric temperature can lead to an

increase in the atmospheric water-holding capacity (as

governed by the Clausius–Clapeyron equation), which

in turn can cause increasing extreme precipitation

(Trenberth et al. 2003). Two climate model experiments

(the Hadley Centre’s high-resolution climate prediction

model UKHI andAustralia’s CSIRO9model; Hennessy

et al. 1997) indicated that precipitation has been shifting

toward more intense convective events and fewer

moderate nonconvective events in the mid-to-low lat-

itudes, and toward more moderate and heavy events in

the high latitudes. In the first alternate hypothesis, we

propose that the monotonic trend in the annual fre-

quency of rainfall extremes is solely due to anthropo-

genic forcing; hence,Yit should vary in response toGST

variability. Westra et al. (2013) have also used GST

data to investigate the trends in annual maximum

rainfall events globally.

Y
it
;Poisson(l

it
) , (9)

ln(l
it
)5ai

1 1bi
1GST

t
, (10)

ai
1 ;N(a
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1 a
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P
i
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12
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i
1 a

13
E

i
,s2
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), and

(11)

bi
1 ;N(b
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1 b
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P

i
1 b

12
CV

i
1 b

13
E

i
,s2

b1
), (12)

where the GST is from 1900 to 2014, the exogenous

predictor.

d. Alternate hypothesis H2: The monotonic trend in
the annual frequency of extreme rainfall events is
attributed to anthropogenic forcing and cyclical
climate variability

Next, we propose a second alternate hypothesis H2,

that the monotonic time trend can be attributed to cy-

clical climate variability and anthropogenic forcing. The

persistence in the climate system can often manifest as

periods of wet or dry years, which in turn can translate

into periods of increasing or decreasing extreme events.

Using climate indicators as predictors in addition to GST

will help contrast these influences. We use four climate

predictors with different quasiperiodic cycles ranging

from interannual to decadal and to multidecadal scales.

The rate parameter lit of the data distribution is informed

by GST, ENSO, NAO, PDO, and AMO. At the second

level, the trend coefficients are informed by the station

predictors. A multivariate normal distribution is used to

model the joint behavior of the climate trend coefficients:

Y
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) , (13)
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whereGST is as before, and ENSO and the NAO, PDO,

and AMO are the exogenous climate indicators. Similar

to H0 and H1, in this model we have the station level

predictors for the intercept and trend (response) co-

efficients at the second level. We model the dependence

among the climate trend coefficients using a multivari-

ate normal distribution with the means informed by the

station level predictors and a 4 3 4 covariance matrix S
estimated using the observed data.

e. H1 versus H2

For any station, if the model proposed under H2 is

better (in terms of providing a reasonable summary of

the data at hand) than the model proposed underH1, we

consider that the trends in the annual frequency of

rainfall extremes can be better explained by the full suite

of predictors as opposed to just GST. Further, we con-

sider that the GST trend coefficient from the model

proposed under H2 is the real anthropogenic influence

and the climate trend coefficients are the real climate

controls. On the contrary, if the model proposed under

H2 is not an improvement over the model proposed

under H1, we hold that H1 is the best alternate hypoth-

esis that can explain the trends. We use posterior pre-

dictive checks (Rubin 1984) to evaluate and compare
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the models for H1 and H2. The Akaike information

criterion (AIC; Akaike 1998) and deviance information

criterion (DIC; Spiegelhalter et al. 2002) are standard

measures to check the prediction accuracy. Recently,

Watanabe (2010) has proposed a fully Bayesian mea-

sure, the Watanabe–Akaike information criterion

(WAIC), which closely approximates Bayesian cross-

validation and is invariant to parameterization. Hence,

we use the WAIC for estimating the pointwise pre-

diction accuracy of the models. WAIC (also called the

widely applicable information criterion) is seen as an

improvement over DIC and can be estimated using the

log-likelihood evaluated at the posterior simulations of

the parameters (Vehtari et al. 2017).WAIC is computed

as 22�n

i51log
Ð
p(yi j u)pposterior(u) du1 2pwaic (Vehtari

et al. 2017), where the first term is the log pointwise

predictive density and the second term is the estimated

effective number of parameters calculated using the

posterior variance of the log predictive density:

pwaic 5�n

i51varposterior[logp(yi j u)]. Smaller values of the

WAIC indicate better estimated predictive accuracy of

the model. Readers are referred to Gelman et al. (1996)

and Gelman et al. (2014) for an in-depth discussion on

posterior predictive assessment of model fitness.

f. Residual trend analysis

For each station, we compute the residuals Rit of

the best model chosen based on the WAIC criterion.

The residuals from the models (H1 or H2) represent

the values forYit after adjusting for exogenous variables,

GST, and/or the four climate covariates (ENSO, NAO,

PDO, and AMO). In other words, they reveal the vari-

ability in Yit beyond what could be affiliated to the ex-

ogenous variables. Hence, the analysis of the time trends

in Rit will help discern any unexplained trend after ac-

counting for background variability. In the spirit of the

Bayesian multilevel models, we fit the following model

to the residuals:

R
it
;N(m
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,s2

i ), (18)
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For each station i, we investigate whether the trend co-

efficient bi
r is significantly different from zero or not.

Similar toH0, we compute the p value from the posterior

distribution of bi
r and evaluate its statistical significance

at 1% level of significance. A p value less than the level

of significance indicates that the residual trend co-

efficient bi
r is statistically significant. Alternately, if the

residual trend coefficient bi
r is not significant, we infer

that the trend initially observed in Yit can be attributed

to global temperature (if the residuals are obtained from

H1) or a combination of global temperature and cyclical

climate (if the residuals are obtained from H2).

g. Choice of prior distributions, model fitting, and
convergence

For all the models, the joint posterior distribution

p(u jdata) of the complete parameter vector is derived

by combining the prior distributions and the likelihood

functions. We assumed a uniform prior distribution for

the variance terms and uninformative normal priors for

the coefficients of the second level (Gelman 2006). The

prior for the covariance matrix S is taken to be inverse

Wishart distribution with an identity scale matrix I and 5

degrees of freedom (onemore than the dimension of the

matrix) (Gelman and Hill 2006).

The parameters are estimated using just another

Gibbs sampler (JAGS; Plummer 2003; Denwood 2016),

which employs the Gibbs sampler, a Markov chain

Monte Carlo (MCMC) method for simulating the pos-

terior probability distribution of the parameters condi-

tional on the current choice of parameters and the data.

Three consecutive chains are simulated using random

initial values for the parameters. Each chain was run for

5000 cycles with 80% burn-in to discard the initial esti-

mations. As Gelman and Rubin (1992) recommended,

we monitor the convergence using a shrink factor. The

ratio of variance between chains and variance within

chains should be lower than 1.1.

5. Results and analysis

a. Results from H0

In Fig. 3, we present the results from H0, that there is

no monotonic trend in the annual frequency of extreme

rainfall events. The stations are shown as open circles

where H0 cannot be rejected and are filled with color

where H0 is rejected. We selected a 1% level to reject

the null hypothesis. The color scheme indicates the di-

rection (orange for increasing and blue for decreasing)

and strength (expressed as percentage change from the

mean per year) of the trend. While the stations in

Colorado and Utah (Southwest climate region) show a

negative trend, much of the country is dominated by a

positive trend. We reject H0 in 742 stations among the

1244 stations in our study. In Fig. 3 (bottom left), we

show the percentage number of stations that exhibit a

trend in each climate region. About 80% of the stations

in the UpperMidwest and the Northeast climate regions

exhibit an increasing trend. This is followed by the Ohio

Valley and the South climate regions where 70% or

more of the stations show an upward trend. Less than
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50% of the stations in the other climate regions exhibit a

trend. These results are consistent with previous findings

fromGroisman et al. (2004), Karl and Knight (1998), and

Balling and Goodrich (2011). In Fig. 3 (bottom right), we

show the percentage number of stations exhibiting trend

as a function of sample size. For the 1244 stations, we

identify howmany stations exhibit significant trend under

each category of sample size. For instance, among the

seven stationswith a sample size of 98 (number of years of

complete data available), six stations exhibit a statistically

significant trend (86%). From Fig. 3 (bottom right), we

can see that the number of stations that show trends re-

duces substantially as the sample size (i.e., the number of

years of available data increases). Having tested the null

hypothesis and identified the locations that exhibit in-

creasing or decreasing trends in the annual frequency of

rainfall extremes, we next present our investigation on

the possible factors to which the trend could be attrib-

uted: anthropogenic forcing or cyclical climate indicators

or a combination thereof.

b. Explaining the trends using H1 and H2

In Fig. 4, we present the breakdown of the stations

based on whether the trend is explained by any of the two

hypotheses. The alternate hypothesis model choice is

based on WAIC selection criterion. We performed a

statistical significance test on the differences ofWAIC for

each stations based on a bootstrap resampling approach.

Repeated draws from the posterior distribution are used

to create a distribution of WAIC values for each model.

These WAIC distributions are verified for significant

differences using a KS test. Wherever the difference is

statistically significant, we report the model with lower

WAIC (H1 or H2) to have better predictive skill (i.e., a

FIG. 3. (top) The spatial distribution of the stations that are significant at 99% confidence level—the values

represent the median of posterior distribution of the time-trend coefficient. (bottom left) The bar charts for per-

centage of significant stations within each climate region. (bottom right) The dependency of the number of sig-

nificant stations to the number of years of data.
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better model that can represent the data). Among the

742 stations where H0 (no monotonic time trend) is

rejected, we identified 293 stations where the model

proposed under H2 offers better predictive accuracy

(WAICH2
,WAICH1

) than the model proposed under

H1. In 274 of these stations (shown as blue dots in

Fig. 4), there is no significant trend in the residuals (i.e.,

br values are indistinguishable from zero); hence, the

trend initially observed can be explained by the combi-

nation of GST and climate signals with different quasi-

periodicities. Most of the stations in the Northwest and

West climate regions, and southern parts of South,

Southeast, Upper Midwest, and Northern Rockies and

Plains climate regions, fall under this category.

Similarly, among the 742 stations where H0 is rejected,

we identified 449 stations where themodel proposed under

H1 offers better predictive accuracy (WAICH1
,WAICH2

)

than themodel proposed underH2. In other words, adding

climate information does not improve the model’s pre-

dictive accuracy. In 409 of these stations (shown as red dots

in Fig. 4), there is no significant trend in the residuals;

hence, the trend initially observed can be affiliated toGST.

Most of the stations in the Northeast, Ohio Valley, and

Upper Midwest climate regions, and the northern parts of

the South and Southeast climate regions, fall under this

category. Generally, it is found that stations with high CV

(rainfall year-to-year variability) responded to H2 and

stations with low CV responded to H1.

c. Attribution to climate change and climate
variability modes

Figure 5 provides the spatial distribution of the tem-

perature response coefficient (b1 fromH1 in Fig. 5a and

b2 from H2 in Fig. 5b). A thick circle is shown for sta-

tions where p(b. 0). 0.9 or p(b. 0), 0.1. These are

the stations that have strong positive or negative asso-

ciation with GST. The color scheme indicates the di-

rection (orange for positive and blue for negative

responses) and strength of association (i.e., the sensi-

tivity expressed as percentage change from themean per

degree Celsius of global temperature). A conjunctive

examination of Figs. 5a and 5b reveals that the stations

in the Southeast climate region have p(b . 0) , 0.9,

indicating a weaker association with GST. On the other

hand, the stations in the Northeast, Ohio Valley, and

Upper Midwest regions have a significant association

with GST.

In Fig. 6, we present the spatial distribution of the re-

sponse coefficients for the four climate covariates

(ENSO, NAO, PDO, and AMO) for the stations repre-

sented by blue dots in Fig. 4 (i.e., where adding climate

information improved the model predictive accuracy).

The color scheme indicates the direction (orange for

positive and blue for negative responses) and strength of

association (i.e., the sensitivity expressed as percentage

change from the mean per degree Celsius change in the

climate indicator). Similar to Fig. 5, a thick circle is shown

for stations where p(b. 0). 0.9 or p(b. 0), 0.1. These

are the stations that have strong positive or negative as-

sociation of rainfall extreme event frequency with the

corresponding climate covariate. ENSO (Fig. 6a) has a

significant positive relationship in southern Florida; the

South, Ohio Valley, and Upper Midwest climate regions;

and parts of California andWashington. These results are

consistent with the results found inGershunov andCayan

(2003), who have investigated the associations of ENSO

FIG. 4. The spatial distribution of stations explained byH1 (where themonotonic trend in the

annual frequency of extreme rainfall events is solely attributed to anthropogenic forcing) orH2

(where monotonic trend in the annual frequency of extreme rainfall events is attributed to

anthropogenic forcing and cyclical climate variability) or left unexplained.
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with heavy precipitation events in the United States. The

NAO (Fig. 6b) is found to have a positive (negative)

connection with the stations in the Midwest (West) re-

gions. PDO (Fig. 6c) replicates a pattern similar to

ENSO, except in the South climate region where a north–

south gradient is observed. The AMO (Fig. 6d) seems to

have a significant negative association in much of the

country, with dominance in stations in the Northern

Rockies and Plains and Upper Midwest climate regions.

In Fig. 6e, we present a summary of the climate influences

(i.e., the number of stations responding to each climate

predictor for each climate region). We consider a climate

predictor to be significant if p(b. 0). 0.9 or p(b. 0),
0.1 from the posterior distribution of its trend coefficient.

The South climate region is most significantly influenced

by the climate covariates.

6. Summary and discussion

There has been much interest recently in identifying

trends in hydrometeorological extreme events, and this

has generated a rich body of literature that documented

the magnitudes and spatial extents of the trends over the

last century. While many of these works check for the

hypothesis of no trend in the data using standard para-

metric/nonparametric tests, here we introduce a frame-

work for trend detection and attribution process using a

set of models (hypotheses) to compare. We start by ask-

ing the question of whether the underlying process of the

data is invariant with time. Hence, we test the hypothesis

that the series is a random draw from a probability dis-

tribution (Poisson distribution in our case) with the mean

not changing over time. Since trends may be due to an

FIG. 5. The response toGST under (a)H1 and (b)H2. Thick circles are stations significant at the

90% confidence level.
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influence of exogenous variables, we posit possible hy-

potheses (models) with these explanatory variables and

recover the trend after their effect. A summary of this

procedure is presented in Fig. 7.

1) Among the 1244 high-quality stations in the contig-

uous United States that were tested for monotonic

trend in the frequency of extreme rainfall events

using the Bayesian multilevel model, we find that in

502 stations the H0 (where there is no trend) cannot

be rejected, whereas in the remaining 742 stations it

is rejected.

2) We postulated two hypotheses that the monotonic

time trend observed in the frequency of rainfall

extremes is (i) solely due to anthropogenic forcing

[H1 was tested using globally averaged near-surface

temperature (GST) as an exogenous variable] and

(ii) partly due to anthropogenic forcing and partly

due to cyclical climate influences (H2 was tested

using GST and four climate covariates—ENSO,

NAO, PDO and AMO—with varying quasiperiod-

icities). Among the 742 stations whereH0 is rejected,

we find that in 449 stations, the model proposed

FIG. 6. The response to different climate variables, (a) ENSO, (b) NAO, (c) PDO, and (d) AMO, coming from H2. Thick circles are

stations significant at the 90% confidence level. (e) The breakdown of response to each climate variable over different climate regions.
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under H1 offers better predictive ability. In the

remaining 293 stations, inclusion of climate indices

improved the predictability. This classification is

based on a new fully Bayesian pointwise predictive

accuracy criterion, the WAIC (Vehtari et al. (2017).

We also tested a hypothesis with only climate pre-

dictors and found that the results are subset of theH2

model. The stations that are best attributed toH2 and

do not exhibit a statistical significance for GST

belong to this intermediate model.

3) Of the 449 stations where H1 offers a reasonable

summary of the data at hand, in 409 stations the

residual trend is nonexistent, indicating that the

trend initially observed in H0 may be attributed to

GST, or that H1 best explains this trend. In 34 of the

remaining 40 stations, we found that the residuals are

not normally distributed. Six of them still exhibit a

monotonic trend after accounting for GST.

4) Of the 293 stations where H2 offers a reasonable

summary of the data at hand, in 274 stations the

residual trend is nonexistent. Hence, the trend

initially observed in H0 may be attributed to a

combination of GST and the climate influences

ENSO, NAO, PDO, andAMO. TheH2 best explains

this trend. Of the remaining 19 stations, 18 have

nonnormal residuals, indicating possible drivers

other than the climate proxies applied in this study.

5) The spatial distribution of the corresponding influ-

ences of GST and the four climate covariates is

provided in Figs. 5 and 6 along with the location of

the stations where the influence is strong [p(b. 0).
0.9 or p(b . 0) , 0.1].

Finally, a summary of this trend analysis and attribu-

tion for each climate region is provided in Table 1. In

most of the stations in the Northwest, West, and

Southwest climate regions, the observed monotonic

time trend in the frequency of extreme rainfall events

can be attributed to both climate change and climate

variability modes (best explained byH2). The Southeast

andNortheast climate regions are dominated by stations

(15.4% in the Southeast and 31.3% in the Northeast)

where the trend can be attributed to GST. In the central

and midwestern United States (Northern Rockies and

Plains, UpperMidwest, Ohio Valley, and South regions)

there is almost an even breakdown of the stations where

the trend can be attributed solely to GST or to a com-

bination of GST and climate.

We have approached this problem in an exploratory

spirit and formulated possible hypotheses (based on

known theoretical arguments) to support or falsify fol-

lowing the data analysis. We see that trends in the

eastern half of the country can be largely attributed to

changing temperatures, and at least the chosen climate

variables have little influence. In the western half of the

FIG. 7. A diagram summarizing the steps of study. Of the 1244

stations used for the study, 742 stations show time trends. Of these,

409 stations can be attributed to global temperature anomalies, and

274 stations can be attributed to global temperature and climate

variables. The remaining 59 stations still show a time trend.

TABLE 1. The number of stations explained byH1 andH2 or left unexplained, within each climate region (in the form No. of explained or

unexplained stations in region divided by the total stations in region, followed by the percentage in parentheses).

Climate regions Explained by H1 Explained by H2 Unexplained

Northwest 9/27 (33.3%) 16/27 (59.3%) 2/27 (7.4%)

West 1/15 (6.7%) 14/15 (93.3%) 0/15 (0%)

Southwest 6/14 (42.9%) 8/14 (57.1%) 0/14 (0%)

Northern Rockies and Plains 37/95 (38.9%) 43/95 (45.3%) 15/95 (15.8%)

Upper Midwest 77/130 (59.2%) 42/130 (32.3%) 11/130 (8.5%)

Ohio Valley 99/147 (67.3%) 36/147 (24.5%) 12/147 (8.2%)

South 83/182 (45.6%) 84/182 (46.2%) 15/182 (8.2%)

Southeast 44/67 (65.7%) 21/67 (31.3%) 2/67 (3%)

Northeast 53/65 (81.5%) 10/65 (15.4%) 2/65 (3.1%)
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country, there is clearly a combined effect of changing

temperature and large-scale cyclical climate variability.

We conclude this work by providing the following ca-

veats. The time series (both observed variables Yit and

exogenous variables) may have substantial autocorre-

lation structure that may manifest as apparent trends in

limited data. Detection of autocorrelation before as-

cribing trends is important. While we did not explicitly

test an autocorrelated model, we investigated for any

autocorrelation in the residuals after accounting for the

exogenous variables. In the 683 stations where the trend

in the residuals is nonexistent, we also found that there is

no autocorrelation in the residuals. A related caution

here is that the exogenous variable could itself have a

time series structure, which we did not consider in this

paper. Further, we did not examine the effect of lagged

dependence of the climate variables and their interac-

tions here. One can develop models where an appro-

priate lag can be chosen based on model performance.

One can also include climate variables’ interaction

based on the well-established theories. For example, in

the western United States, there is a greater effect of

climate modes when PDO and ENSO are in phase

(Gershunov 1998; McCabe and Dettinger 1999). Such

interactions can be included as part of the model

framework. Furthermore, we have only demonstrated a

generalized linear model here. Clearly, one can imple-

ment the methodology using nonparametric models and

nonlinear trend detections. These are all part of our

current investigation.
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